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I The learner’s input:
I Domain set (Instances Space): An arbitrary set X .
I Domain point (Instance) : x ∈ X .
I Label set: Y = {0,1} or Y = {+1,−1}.
I Training set: S = {(xi , yi)}m

i=1, where every (xi , yi) ∈ X × Y.
I The learner’s output: h : X → Y.
I A simple data-generation model: we assume that each pair

in the training set S is generated by
I first sampling a point xi according to a fixed but unknown

distribution D on X ,
I and then labeling it by the ‘’correct’’ labeling function f , that

is, yi = f (xi).



I Generalization error: a measure of success.

LD,f (h) = Px∼D(h(x) 6= f (x)) = D({x : h(x) 6= f (x)}).

I Training error: LS(h) = 1
m

m∑
i=1

I(h(xi) 6= yi)

I Hypothesis class H: A set of functions mapping from X to
Y.

I The ERMH Learner: for a given class H, and a training set
S, the ERMH learner uses the ERM rule to choose a
predictor h ∈ H, with the lowest possible error over S.
Formally,

ERMH(S) ∈ argmin
h∈H

LS(h).

We also use hS to denote a result of applying ERMH to S,
that is,

hS ∈ argmin
h∈H

LS(h).



Definition (The Realizability Assumption)
There exists h? ∈ H s.t. L(D,f )(h?) = 0.

I This assumption implies that with probability 1, we have
I LS(h?) = 0.
I LS(hS) = 0 for every ERM hypothesis hS.



Theorem
Let H be a finite hypothesis class. Let δ ∈ (0,1) and ε > 0 and
let m be an integer that satisfies

m ≥ log(|H|/δ)
ε

.

Then, for any labeling function, f , and for any distribution D, for
which the realizability assumption holds, with probability at
least 1− δ over the choice of an i.i.d. sample S of size m, we
have that for every ERM hypothesis, hS, it holds that

L(D,f )(hS) ≤ ε.

I Notes: for a sufficiently large m, the ERMH rule over a
finite hypothesis class will be Probably (with confidence
1− δ) Approximately (up to an error of ε) Correct.



Proof. Let HB be the set of “bad” hypotheses, that is,

HB = {h ∈ H : L(D,f )(h) > ε}.

Let S|x = {x1, · · · , xm} be the instances of the training set.
Then we upper bound the probability

Dm({S|x : L(D,f )(hS) > ε}).

In addition, let M = {S|x : ∃h ∈ HB,LS(h) = 0}. Note that

{S|x : L(D,f )(hS) > ε} ⊆ M =
⋃

h∈HB

{S|x : LS(h) = 0}.



Hence

Dm({S|x : L(D,f )(hS) > ε}) ≤ Dm(M) = Dm(
⋃

h∈HB

{S|x : LS(h) = 0})

≤
∑

h∈HB

Dm({S|x : LS(h) = 0})

Since the instances are sampled i.i.d., we get that

Dm({S|x : LS(h) = 0}) =
m∏

i=1

D({xi : h(xi) = f (xi)}).

Note for every h ∈ HB,

D({xi : h(xi) = f (xi)}) = 1− L(D,f )(h) ≤ 1− ε, and



Dm({S|x : LS(h) = 0}) ≤ (1− ε)m ≤ e−mε.
Therefore,

Dm({S|x : L(D,f )(hS) > ε}) ≤ |HB|e−mε ≤ |H|e−mε.

Let
|H|e−mε ≤ δ,

then
m ≥ log(|H|/δ)

ε
,

and
1−Dm({S|x : L(D,f )(hS) > ε}) ≥ 1− δ. �
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Definition (PAC Learnability)
A hypothesis class H is PAC learnable if there exist a function
mH : (0,1)2 → N and a learning algorithm with the following
property: For every δ, ε ∈ (0,1) , for every distribution over X ,
and for every labeling function f : X → {0,1}, if the realizable
assumption holds with respect to H, D, f , then when running
the algorithm on m ≥ mH(ε, δ) i.i.d. examples genenated by D
and labeled by f , the algorithms returns a hypothesis h such
that, with probability of at least 1− δ (over the choice of the
examples),

L(D,f )(h) ≤ ε.



Probably Approximately Correct Learnability
I Approximately Correct: the accuracy parameter ε

determines how far the output classifier can be from the
optimal one.

I Probably: the confidence parameter δ indicates how likely
the classifier is to meet that accuracy requirement.



I Sample complexity: How many samples are required to
guarantee a probably approximately correct solution.
I If H is PAC learnable, there are many functions mH that

satisfy the requirements given the definition of PAC
learnability.

I The sample complexity of learning H is defined as minimal
function, in the sense that for any ε, δ, mH(ε, δ) is the
minimal integer that satisfies the requirements g of PAC
learning with accuracy ε and confidence δ.



Corollary
Every finite hypothesis class is PAC learnable with sample
complexity

mH(ε, δ) ≤
⌈ log(|H|/δ)

ε

⌉
.

I Q: Does the finiteness determine the PAC learnability of a
hypothesis class?

I A: No.
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To waive the realizability assumption

I Recall that the realizability assumption requires that there
exists h? ∈ H s.t. LD,f (h?) = 0.

I For practical learning tasks, the realizability assumption
may be too strong.

I From PAC learning to Agnostic PAC learning: releasing the
realizability assumption.



A More Realistic Model for the Data-Generating Distribution
I From the deterministic case of a fixed but unknown

distribution over X and a correct labeling function f to the
stochastic case.

I Let D be a probability distribution over X × Y.
I Two parts of such a distribution:

I a marginal distribution Dx over unlabelled domain points.
I a conditional probability D((x , y)|x) over labels for each

point.

Generalization Error Revised:

LD(h) = P(x ,y)∼D(h(x) 6= y) = D({(x , y) : h(x) 6= y}).



I The Goal: to find some hypothesis, h : X → Y, that
(probably approximately) minimizes the generalization
error, LD(h).

I The Bayes Optimal Predictor: Given any distribution D
over X × {0,1}, the best label predicting function from X
to {0,1} will be

fD(x) =
{

1 if P[y = 1|x ] ≥ 1
2

0 otherwise
.

I It is easy to verify that for every distribution D,

LD(fD) ≤ LD(g)

for every classifier g : X → {0,1}.



I D is a fixed but unknown distribution.
I We cannot utilize the optimal predictor fD.
I Instead, we require that the learning algorithm will find a

predictor whose error is not much larger than the best
possible error of a predictor in some given benchmark
hypothesis class.



Definition (Agnostic PAC Learnability)
A hypothesis class H is agnostic PAC learnable if there exist a
function mH : (0,1)2 → N and a learning algorithm with the
following property: For every δ, ε ∈ (0,1) , for every distribution
D over X × Y, then when running the algorithm on
m ≥ mH(ε, δ) i.i.d. examples genenated by D, the algorithms
returns a hypothesis h such that, with probability of at least
1− δ (over the choice of the m training examples),

LD(h) ≤ min
h′∈H

LD(h′) + ε.



I Agnostic PAC learning generalizes the definition of PAC
learning.
I If the realizability assumption holds, agnostic PAC learning

provides the same guarantee as PAC learning.
I When the realizability assumption does not hold, no

learner can guarantee an arbitrarily small error.
I Under the definition agnostic PAC learning, a learner can

still declare success if its error is not much larger than the
best error achievable by a predictor from the hypothesis
class H.



I Generalized loss functions :
I Given any set H and some domain Z , let ` be any function

from H× Z to the set of nonnegative real numbers,
` : H× Z → R+.

I We call such functions loss functions.
I For prediction tasks, Z = X × Y.

I 0-1 loss:

`0−1(h, (x , y)) =
{

0 if h(x) = y
1 if h(x) 6= y .

I Square loss: `sq(h, (x , y)) = (h(x)− y)2.



I Risk function: the expected loss of a classifier h ∈ H with
respect to A distribution D over the domain set Z :

LD(h) = Ez∼D[`(h, z)].

I Empirical Risk: the expected loss of a classifier h ∈ H over
a given a sample S = (z1, z2, · · · , zm) ∈ Z m:

LS(h) =
1
m

m∑
i=1

`(h, zi).



Definition (Agnostic PAC Learnability for General Loss
Functions)
A hypothesis class H is agnostic PAC learnable with respect to
a set Z and a loss function ` : H× Z → R+, if there exist a
function mH : (0,1)2 → N and a learning algorithm with the
following property: For every δ, ε ∈ (0,1) , and for every
distribution D over Z , then when running the algorithm on
m ≥ mH(ε, δ) i.i.d. examples genenated by D, the algorithms
returns a hypothesis h such that, with probability of at least
1− δ (over the choice of the m training examples),

LD(h) ≤ min
h′∈H

LD(h′) + ε,

where LD(h) = Ez∼D[`(h, z)].
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Definition (ε-representative sample)
A training set S is called ε-representative (w.r.t. domain Z ,
hypothesis class H, loss function l , and distribution D) if

∀h ∈ H, |LS(h)− LD(h)| ≤ ε.

Lemma
Assume that a training set S is ε

2 -representative (w.r.t. domain
Z , hypothesis class H, loss function l, and distribution D). Then
any output of ERMH(S), namely, any hS ∈ argminh∈H LS(h),
satisfies

LD(hS) ≤ min
h∈H

LD(h) + ε.



Lemma
Assume that a training set S is ε

2 -representative (w.r.t. domain
Z , hypothesis class H, loss function l, and distribution D). Then
any output of ERMH(S), namely, any hS ∈ argminh∈H LS(h),
satisfies

LD(hS) ≤ min
h∈H

LD(h) + ε.



Proof.
For every h ∈ H,

LD(hS) ≤ LS(hS) +
ε

2
(S is ε− representative.)

≤ LS(h) +
ε

2
(hS is an ERM predictor.)

≤ LD(h) +
ε

2
+
ε

2
(S is ε− representative.)

= LD(h) + ε.



Definition (Uniform Convergence)
We say that a hypothesis class H has the uniform convergence
property(w.r.t. domain Z and loss function l) if there exists a
function mUC

H : (0,1)2 → N such that for every ε, δ ∈ (0,1) and
for every probability distribution D over Z , if S is a sample of
m ≥ mUC

H (ε, δ) examples drawn i.i.d. according to D, then, with
probability at least 1− δ, S is ε-representative.



Corollary
If a class H has the uniform convergence property with a
function mUC

H then the class is agnostically PAC learnable with
the sample complexity mH(ε, δ) ≤ mUC

H ( ε2 , δ). Furthermore, in
that case, the ERMH paradigm is a successful agnostic PAC
learner for H.



Corollary
Let H be a finite hypothesis class, let Z be a domain, and let
` : H× Z → [0,1] be a loss function. Then H enjoys the
uniform convergence property with sample complexity

mUC
H (ε, δ) ≤ d log(2|H|/δ)

2ε2
e.

Furthermore, the class is agnostically PAC learnable using the
ERM algorithm with sample complexity

mH(ε, δ) ≤ mUC
H (ε/2, δ) ≤ d2 log(2|H|/δ)

ε2
e.



Theorem (Hoeffding’s Inequality)
Let θ1, · · · , θm be a sequence of i.i.d. random variables and
assume that for all i , E[θi ] = µ and P[a ≤ θi ≤ b] = 1. Then, for
any ε > 0,

P

[
| 1
m

m∑
i=1

θi − µ| > ε

]
≤ 2 exp(−2mε2/(b − a)2).



Proof.
Fix some ε, δ ∈ (0,1). We need to find a sample size m that
guarantees that for any D, with probability of at least 1− δ of
the choice of S = (z1, · · · , zm) sampled i.i.d. from D we have
that for all h ∈ H, |LS(h)− LD(h)| ≤ ε. That is,

Dm({S : ∀h ∈ H, |LS(h)− LD(h)| ≤ ε}) ≥ 1− δ.

Equivalently, we need to show that

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) < δ.

Notice that

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε})
≤

∑
h∈H
Dm(S : |LS(h)− LD(h)| > ε)



Applying Hoeffding’s inequality, then we obtain that

Dm(S : |LS(h)− LD(h)| > ε) ≤ 2 exp(−2mε2).

Hence

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε})
≤

∑
h∈H
Dm(S : |LS(h)− LD(h)| > ε)

≤ 2|H| exp(−2mε2).

Finally, if we choose

m ≥ log(2|H|/δ)
2ε2

,

then
Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) < δ. �
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Theorem (No-Free-Lunch)
Let A be any learning algorithm for the task of binary
classification with respect to the 0-1 loss over a domain X . Let
m be any number smaller than |X |/2, representing a training
set size. Then, there exists a distribution D over X × {0,1}
such that:
(1) There exists a function f : X → {0,1} with LD(f ) = 0.
(2) With probability of at least 1

7 over the choice of S ∼ Dm we
have that LD(A(S)) ≥ 1

8 .



I How does the No-Free-Lunch result relate to the need for
prior knowledge?

I Let us consider an ERM predictor over the hypothesis
class H of all functions f from X to {0,1}.

I This class represents lack of prior knowledge: Every
possible function from X to {0,1} is considered a good
candidate.

Corollary
Let X be an infinite domain set and let H be the set of all
functions from X to {0,1}. Then, H is not PAC learnable.



Proof. Assume, by way of contradiction, that the class is
learnable. Choose some ε < 1/8 and δ < 1/7. By the definition
of PAC learnability, there must be some learning algorithm A
and an integer m = m(ε, δ), such that for any data-generating
distribution over X × {0,1}, if for some function f : X → {0,1},
LD(f ) = 0, then with probability greater than 1− δ when A is
applied to samples S of size m, generated i.i.d. by D,
LD(A(S)) ≤ ε.
However, applying the No-Free-Lunch theorem, since
|X | > 2m, for the algorithm A, there exists a distribution D such
that with probability greater than 1/7 ≥ δ, LD(A(S)) > 1/8 > ε,
which leads to the desired contradiction. �



Error Decomposition:
I Let hS be an ERMH hypothesis, then

LD(hS) = [LD(hS)− min
h∈H

LD(h)] + min
h∈H

LD(h).

LD(hS)−εBayes = [LD(hS)−min
h∈H

LD(h)]+[min
h∈H

LD(h)−εBayes].

I Approximation Error: measures how much inductive bias
we have.

εapp = min
h∈H

LD(h).

εapp = min
h∈H

LD(h)− εBayes.

I Enlarging the hypothesis class can decrease the
approximation error.



Error Decomposition:
I Let hS be an ERMH hypothesis, then

LD(hS) = [LD(hS)− min
h∈H

LD(h)] + min
h∈H

LD(h).

I Estimation Error: the difference between the minimum risk
achievable by a predictor in the hypothesis class and the
error achieved by the ERM predictor.

εest = LD(hS)− min
h∈H

LD(h).

I The quality of estimation error depends on the training set
size and the size, or complexity, of the hypothesis set.

I For a finite hypothesis case, εest increases (logarithmically)
with |H| and decrease with m.



The bias-complexity tradeoff
I Choosing H to be a very rich class decreases the

approximation error but at the same time might increase
the estimation error, as a rich H might lead to overfitting.

I Choosing H to be a very small set reduce the estimation
error but might increase the approximation error or, in other
words, might lead to underfitting.

I Why not choose the class containing only the Bayes
optimal classifier?

I Learning theory studies how rich we can make H while still
maintaining reasonable estimation error.

I In many cases, empirical research focuses on designing
good hypothesis classes for a certain domain.
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