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» The learner’s input:
» Domain set (Instances Space): An arbitrary set X.
» Domain point (Instance) : x € X.
> Labelset: Y ={0,1}orY = {+1,—-1}.
» Training set: S = {(x;, yi)}/";, where every (x;, y;) € X x ).
» The learner’s output: h: X — .
» A simple data-generation model: we assume that each pair
in the training set S is generated by
» first sampling a point x; according to a fixed but unknown
distribution D on X,
> and then labeling it by the “correct” labeling function f, that
iS, yi= f(X,').



» Generalization error: a measure of success.

Lp r(h) = Pxup(h(x) # f(x)) = D({x : h(x) # f(x)}).

NIE

»> Training error: Lg(h) =

1 I(h(x;) # yi)

» Hypothesis class #: A set of functions mapping from X to
V.

» The ERMy Learner: for a given class #, and a training set
S, the ERMy learner uses the ERM rule to choose a
predictor h € H, with the lowest possible error over S.
Formally,

ERMy(S) € argmin Lg(h).
heH
We also use hg to denote a result of applying ERMy to S,
that is,

hg € argmin Lg(h).
heH



Definition (The Realizability Assumption)
There exists h* € H s.t. Lip r(h*) = 0.
» This assumption implies that with probability 1, we have

> Lg(h*)=0.
» [g(hs) = 0 for every ERM hypothesis hg.



Theorem
Let H be a finite hypothesis class. Leto € (0,1) and e > 0 and
let m be an integer that satisfies

> 1o8(71/9)

€

Then, for any labeling function, f, and for any distribution D, for
which the realizability assumption holds, with probability at
least 1 — § over the choice of an i.i.d. sample S of size m, we
have that for every ERM hypothesis, hs, it holds that

Lip,n(hs) <e.

» Notes: for a sufficiently large m, the ERMy rule over a
finite hypothesis class will be Probably (with confidence
1 — §) Approximately (up to an error of €) Correct.



Proof. Let Hpg be the set of “bad” hypotheses, that is,
Hg = {h ceH: L(va)(h) > 6}.

Let S|x = {x1,---, Xm} be the instances of the training set.
Then we upper bound the probability

D"({S|x : Lip,r)(hs) > €}).
In addition, let M = {S|x : 3h € Hp, Ls(h) = 0}. Note that

{Slx: Lip.ry(hs) > ey M= [ {Slx: Ls(h) = 0}.
heHpg



Hence

D™({Slx : Lipn(hs) > €}) < D"(M) = D"( | {Slx : Ls(h) = 0})
heHpg

< 3 D7({Sls : Ls(h) = 0})

heHpg

Since the instances are sampled i.i.d., we get that
m

DT({Sx : Ls(h) = 0}) = [T P({x : h(xi) = £(x)}).

i=1

Note for every h € Hp,

D({X,‘ : h(X,') = f(X,)}) =1- L(DJ)(h) <1 —g¢ and



D"({S|x : Ls(h) =0}) < (1 - )" < e™.
Therefore,

D"({Slx : Lip,n(hs) > €}) < |Hple™™ < [H|e™™.

Let
[Hle™™ <9,
then
> o8(#1/8)
€
and

1 —-D"({S|x: Lipry(hs) >e€}) >1—0.0
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Definition (PAC Learnability)
A hypothesis class # is PAC learnable if there exist a function
my, : (0,1)% — N and a learning algorithm with the following
property: For every d,¢ € (0,1) , for every distribution over X',
and for every labeling function f : X — {0, 1}, if the realizable
assumption holds with respect to H, D, f, then when running
the algorithm on m > my(e, d) i.i.d. examples genenated by D
and labeled by f, the algorithms returns a hypothesis h such
that, with probability of at least 1 — § (over the choice of the
examples),

Lipn(h) <e.



Probably Approximately Correct Learnability

» Approximately Correct: the accuracy parameter e

determines how far the output classifier can be from the
optimal one.

» Probably: the confidence parameter ¢§ indicates how likely
the classifier is to meet that accuracy requirement.



» Sample complexity: How many samples are required to
guarantee a probably approximately correct solution.

» If H is PAC learnable, there are many functions my that
satisfy the requirements given the definition of PAC
learnability.

» The sample complexity of learning  is defined as minimal
function, in the sense that for any ¢, §, my (¢, 0) is the
minimal integer that satisfies the requirements g of PAC
learning with accuracy e and confidence 4.



Corollary
Every finite hypothesis class is PAC learnable with sample
complexity

e, ) < [2EHI0)).

» Q: Does the finiteness determine the PAC learnability of a
hypothesis class?

> A: No.
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To waive the realizability assumption

» Recall that the realizability assumption requires that there
exists h* € H s.t. Lp¢(h*) = 0.

» For practical learning tasks, the realizability assumption
may be too strong.

» From PAC learning to Agnostic PAC learning: releasing the
realizability assumption.



A More Realistic Model for the Data-Generating Distribution

» From the deterministic case of a fixed but unknown
distribution over X and a correct labeling function f to the
stochastic case.

> Let D be a probability distribution over X' x ).

» Two parts of such a distribution:

> a marginal distribution Dy over unlabelled domain points.
> a conditional probability D((x, y)|x) over labels for each
point.

Generalization Error Revised:

Lp(h) = Pxy)~p(h(x) # y) = DH(x, ¥) - h(x) # 1)



The Goal: to find some hypothesis, h: X — ), that
(probably approximately) minimizes the generalization
error, Lp(h).

The Bayes Optimal Predictor: Given any distribution D
over X x {0, 1}, the best label predicting function from X
to {0, 1} will be

1 iRy =1 >}
o(x) = { 0 otherwise '

It is easy to verify that for every distribution D,

Lp(fp) < Lp(9)

for every classifier g : X — {0, 1}.



» D is a fixed but unknown distribution.

» We cannot utilize the optimal predictor fp.

» Instead, we require that the learning algorithm will find a
predictor whose error is not much larger than the best

possible error of a predictor in some given benchmark
hypothesis class.



Definition (Agnostic PAC Learnability)

A hypothesis class # is agnostic PAC learnable if there exist a
function my, : (0,1)? — N and a learning algorithm with the
following property: For every ¢, € (0, 1) , for every distribution
D over X x Y, then when running the algorithm on

m > my(e, d) i.i.d. examples genenated by D, the algorithms
returns a hypothesis h such that, with probability of at least

1 — § (over the choice of the m training examples),

< mi )+
Lp(h) < min Lp(H)+e



» Agnostic PAC learning generalizes the definition of PAC
learning.

> [f the realizability assumption holds, agnostic PAC learning
provides the same guarantee as PAC learning.
» When the realizability assumption does not hold, no
learner can guarantee an arbitrarily small error.

» Under the definition agnostic PAC learning, a learner can
still declare success if its error is not much larger than the
best error achievable by a predictor from the hypothesis
class H.



» Generalized loss functions :

» Given any set % and some domain Z, let ¢ be any function
from H x Z to the set of nonnegative real numbers,
0:HxZ—Ry.

» We call such functions loss functions.

> For prediction tasks, Z = & x ).

> 0-1 loss:

ot ={ § 2L

> Square loss: £sq(h, (x,y)) = (h(x) — y)>2.



» Risk function: the expected loss of a classifier h € H with
respect to A distribution D over the domain set Z:

Lp(h) = E,p(h, 2)].
» Empirical Risk: the expected loss of a classifier h € ‘H over
agivenasample S=(zy,22, -+ ,zm) € Z™:
1 m

Ls(h) = — > uh, z).

i=1



Definition (Agnostic PAC Learnability for General Loss
Functions)

A hypothesis class H is agnostic PAC learnable with respect to
a set Z and a loss function ¢ : H x Z — R, if there exist a
function my, : (0,1)? — N and a learning algorithm with the
following property: For every 6,¢ € (0, 1) , and for every
distribution D over Z, then when running the algorithm on

m > my(e,9) i.i.d. examples genenated by D, the algorithms
returns a hypothesis h such that, with probability of at least

1 — ¢ (over the choice of the m training examples),

Lp(h) < min Lp(H
p(h) < min Lp(H) +e,

where Lp(h) = E . p[l(h, 2)].
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Definition (e-representative sample)

A training set S is called e-representative (w.r.t. domain Z,
hypothesis class #, loss function /, and distribution D) if

VheH, |Ls(h) — Lp(h)| < .

Lemma

Assume that a training set S is 5-representative (w.r.t. domain
Z, hypothesis class H, loss function |, and distribution D). Then
any output of ERMy,(S), namely, any hg € argminycq, Ls(h),
satisfies

Lp(hs) < min Lp(h .
o(hs) < min Lp(h) + ¢



Lemma

Assume that a training set S is §-representative (w.r.t. domain
Z, hypothesis class H, loss function |, and distribution D). Then
any output of ERMy(S), namely, any hg € argminpcq, Ls(h),
satisfies

< mi .
LD(hs) ~ ir;’g?rl LD(h) +€



Proof.
For every h € H,

Lp(hs) < Lg(hs)+ (Sis € — representative.)
< Lg(h)+ % (hs is an ERM predictor.)
< Lp(h)+ % + % (Sis € — representative.)
= Lp(h)+e



Definition (Uniform Convergence)

We say that a hypothesis class H has the uniform convergence
property(w.r.t. domain Z and loss function /) if there exists a
function m¥C : (0,1)2 — N such that for every €, € (0,1) and
for every probability distribution D over Z, if S is a sample of

m > m¥C(e, 5) examples drawn i.i.d. according to D, then, with
probability at least 1 — §, S is e-representative.



Corollary

If a class H has the uniform convergence property with a
function m¥C then the class is agnostically PAC learnable with
the sample complexity my(e,d) < mYC(5,5). Furthermore, in
that case, the ERMy, paradigm is a successful agnostic PAC
learner for H.



Corollary

Let H be a finite hypothesis class, let Z be a domain, and let
¢:H x Z—[0,1] be a loss function. Then H enjoys the
uniform convergence property with sample complexity

log(2[#/9)

miO(e,8) < [EEZ.

Furthermore, the class is agnostically PAC learnable using the
ERM algorithm with sample complexity

2log(2[#]/9)
2

ma(e,8) < m¥C(e/2,6) < [ -

1.



Theorem (Hoeffding’s Inequality)

Let#b4,---, 6m be a sequence of i.i.d. random variables and
assume that for all i, E[0;] = p and Pla < 0; < b] = 1. Then, for
anye >0,

P [\:n ie, —ul > e] < 2exp(—2mé? /(b — a)?).

i=1



Proof.

Fix some €, € (0,1). We need to find a sample size m that
guarantees that for any D, with probability of at least 1 — § of
the choice of S = (zy,--- , zn) sampled i.i.d. from D we have
that for all h € H, |Lg(h) — Lp(h)| < e. That s,

D™({S:Vhe H,|Ls(h) — Lp(h)| <e€})>1—0.
Equivalently, we need to show that
D"({S:3he H,|Ls(h) — Lp(h)| > €}) <6
Notice that

D"({S:3heH, \Ls( ) = Lo(h)] > €})
< > D™(S:|Ls(h) — Lp(h)| > ¢)

heH



Applying Hoeffding’s inequality, then we obtain that
D™(S : |Ls(h) — Lp(h)| > €) < 2exp(—2mé?).
Hence

D™({S:3h e M, |Ls(h) — Lp(h)| > €})

< Y. D™(S:|Ls(h) — Lp(h)| > €)
heH

< 2|H|exp(—2me?).
Finally, if we choose

log(2|#|/9)
m> — ' -
- 2¢2 7

then
D"({S:3heH,|Ls(h) — Lp(h)| > €}) < 6.0
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Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary
classification with respect to the 0-1 loss over a domain X'. Let
m be any number smaller than |X|/2, representing a training

set size. Then, there exists a distribution D over X x {0,1}
such that:

(1) There exists a function f : X — {0,1} with Lp(f) = 0.

(2) With probability of at least 1 over the choice of S ~ D™ we
have that Lp(A(S)) > 3.



» How does the No-Free-Lunch result relate to the need for
prior knowledge?

» Let us consider an ERM predictor over the hypothesis
class H of all functions f from X to {0, 1}.

» This class represents lack of prior knowledge: Every
possible function from X to {0, 1} is considered a good
candidate.

Corollary
Let X be an infinite domain set and let H be the set of all
functions from X to {0,1}. Then, H is not PAC learnable.



Proof. Assume, by way of contradiction, that the class is
learnable. Choose some ¢ < 1/8 and § < 1/7. By the definition
of PAC learnability, there must be some learning algorithm A
and an integer m = m(e, ¢), such that for any data-generating
distribution over & x {0, 1}, if for some function f: & — {0,1},
Lp(f) = 0, then with probability greater than 1 — § when A is
applied to samples S of size m, generated i.i.d. by D,
Lp(A(S)) <e.

However, applying the No-Free-Lunch theorem, since

|X| > 2m, for the algorithm A, there exists a distribution D such
that with probability greater than 1/7 > ¢, Lp(A(S)) > 1/8 >,
which leads to the desired contradiction. O



Error Decomposition:
> Let hg be an ERMy, hypothesis, then

Lp(hs) = [Lp(hs) — min Lp(h)] + min Lp(h).

Lo (hs) — cpuses = [Lo(s) — min Lo (h)]+[min Lp(h) —enuye].

» Approximation Error: measures how much inductive bias
we have.

€app = fr;rélﬂ Lp(h).

€app = Hy,’[} LD(h) — €Bayes-

» Enlarging the hypothesis class can decrease the
approximation error.



Error Decomposition:
» Let hg be an ERMy, hypothesis, then

Lp(hs) = [Lp(hs) — min Lp(h)] + min Lp(h).

» Estimation Error: the difference between the minimum risk
achievable by a predictor in the hypothesis class and the
error achieved by the ERM predictor.

€est — I—'D(hS) - /I‘;’élyf_][ LD(h)

» The quality of estimation error depends on the training set
size and the size, or complexity, of the hypothesis set.

» For a finite hypothesis case, ¢ increases (logarithmically)
with || and decrease with m.



The bias-complexity tradeoff

» Choosing H to be a very rich class decreases the
approximation error but at the same time might increase
the estimation error, as a rich H might lead to overfitting.

» Choosing H to be a very small set reduce the estimation
error but might increase the approximation error or, in other
words, might lead to underfitting.

» Why not choose the class containing only the Bayes
optimal classifier?

» Learning theory studies how rich we can make #H while still
maintaining reasonable estimation error.

» In many cases, empirical research focuses on designing
good hypothesis classes for a certain domain.



	Empirical Risk Minimization
	Probably Approximately Correct Learning
	Agnostic PAC learnability
	Uniform Convergence
	The Bias-Complexity Tradeoff

