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Outline

The VC-Dimension



I Our goal:
I figure out which classes H are PAC learnable, and
I characterize exactly the sample complexity of learning a

given hypothesis calss
I Recall that finite classes are learnable.

I Every H is PAC learnable with sample complexity

mH(ε, δ) ≤
⌈ log(|H|/δ)

ε

⌉
.

I H is agnostically PAC learnable using the ERM algorithm
with sample complexity

mH(ε, δ) ≤ mUC
H (ε/2, δ) ≤ d2 log(2|H|/δ)

ε2
e.

I Let H be the set of all functions from an infinite domain set
X to {0,1}. Then, H is not PAC learnable.

I Can infinite-size classes be learnable?



Finiteness vs Infiniteness:
I Consider H = {ha : a ∈ R}, where ha(x) = I(x < a).
I H is of infinite size.
I H is PAC learnable, using the ERM rule, with sample

complexity of mH(ε, δ) ≤ dlog(2/δ)/εe.



Definition (Restriction of H to C)
Let H be a class of functions from X to {0,1} and let
C = {c1, · · · , cm} ⊂ X . The restriction of H to C is the set of
functions from C to {0,1} that can be derived from H. That is,
HC = {(h(c1), · · · ,h(cm)) : h ∈ H}, where we represent each
function from C to {0,1} as a vector in {0,1}|C|.

Definition (Shattering)
A hypothesis class H shatters a finite set C ⊂ X if the
restriction of H to C is the set of all functions from C to {0,1}.
That is,

|HC | = 2|C|.



Consider H = {ha : a ∈ R} again.
I Consider C1 = {c1}, then hc1+1(c1) = 1 and hc1−1(c1) = 0.

So, H shatters C1;
I Consider C2 = {c1, c2}, where c1 < c2, then ha(c1) = 0

implies ha(c2) = 0. So, h′ : C2 → {0,1} is not icluded in
HC2 , and C2 is not shattered by H.



Corollary
Let H be a hypothesis class of functions from X to {0,1}. Let
m be a training set size. Assume that there exists a set C ⊂ X
of size 2m that is shattered by H. Then, for any learning
algorithm, A, there exist a distribution D over X × {0,1} and a
predictor h ∈ H such that LD(h) = 0 but with probability of at
least 1

7 over the choice of S ∼ Dm we have that LD(A(S)) ≥ 1
8 .



Definition (VC-dimension)
The VC-dimension of a hypothesis class H, denoted
VCdim(H), is the maximal size of a set C ⊂ X that can be
shattered by H. if H can shatter sets of arbitrarily large size we
say that H has infinite VC-dimension.

I To show that VCdim(H) = d we need to show that
1. There exists a set C of size d that is shattered by H.
2. Every set C of size d + 1 is not shattered by H.

I Let H = {ha : a ∈ R}, then VCdim(H) = 1.
I Let H be a finite class, then VCdim(H) ≤ log2(|H|).



Theorem
Let H be a class of infinite VC-dimension. Then, H is not PAC
learnable.

The converse is also true: A finite VC-dimension guarantees
learnability.



Theorem (The Fundamental Theorem of Statistical
Learning)
Let H be a hypothesis class of functions from a domain X to
{0,1} and let the loss function be the 0-1 loss. Then, the
following are equivalent:

1. H has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC learner for H.
3. H is agnostic PAC learnable.
4. H is PAC learnable.
5. Any ERM rule is a successful PAC learnable for H.
6. H has a finite VC-dimension.



Theorem (The Fundamental Theorem of Statistical
Learning-Quantitative Version)
Let H be a hypothesis class of functions from a domain X to
{0,1} and let the loss function be the 0-1 loss. Assume that
VCdim(H) = d <∞. Then, there are absolute constants C1,
C2 such that:

1. H has the uniform convergence property with sample
complexity

C1
d + log(1/δ)

ε2
≤ mUC

H (ε, δ) ≤ C2
d + log(1/δ)

ε2
.

2. H is agnostic PAC learnable with sample complexity

C1
d + log(1/δ)

ε2
≤ mH(ε, δ) ≤ C2

d + log(1/δ)
ε2

.

3. H is PAC learnable with sample complexity

C1
d + log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log(1/ε) + log(1/δ)
ε

.



Definition (Growth Function)
Let H be a hypothesis class. Then the growth function of H,
denoted τH : N→ N, is defined as

τH(m) = max
C⊂X :|C|=m

|HC |.

I If VCdim(H) = d <∞, then for any m ≤ d we have
τH(m) = 2m.

I How does the growth function increase when m > d?



Lemma (Sauer-Shelah-Perles)
Let H be a hypothesis class with VCdim(H) = d <∞. Then, for

all m, τH(m) ≤
d∑

i=0

(
m
i

)
. In particular, if m > d + 1 then

τH(m) ≤ (em/d)d .

Theorem (6.11)
Let H be a class and let τH be its growth function. Then, for
every D and every δ ∈ (0,1), with probability of at least 1− δ
over the choice of S ∼ Dm we have

|LD(h)− LS(h)| ≤
4 +

√
log(τH(2m))

δ
√

2m



Theorem (The Fundamental Theorem of Statistical
Learning)
Let H be a hypothesis class of functions from a domain X to
{0,1} and let the loss function be the 0-1 loss. Then, the
following are equivalent:

1. H has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC learner for H.
3. H is agnostic PAC learnable.
4. H is PAC learnable.
5. Any ERM rule is a successful PAC learnable for H.
6. H has a finite VC-dimension.



Proof of the Fundamental Theorem

It suffices to prove that if the VC-dimension is finite then the
uniform convergence property holds.
I From Sauer’s lemma we have that for m > d ,
τH(2m) ≤ (2em/d)d . Combining this with Theorem 6.11
we obtain that with probability of at least 1− δ,

|LD(h)− LS(h)| ≤
4 +

√
d log(2em/d)
δ
√

2m
.

For simplicity assume that
√

d log(2em/d) ≥ 4; hence,

|LD(h)− LS(h)| ≤
1
δ

√
2d log(2em/d)

m
.



I To ensure that 1
δ

√
2d log(2em/d)

m is at most ε we need that

m ≥ 2d log(m)

(δε)2 +
2d log(2e/d)

(δε)2 .

I Notice that x ≥ 4a log(2a) + 2b ⇒ x ≥ a log(x) + b for
a ≥ 1 and b > 0(LEMMA A.2), then a sufficient condition
for the preceding to hold is that

m ≥ 4
2d
(δε)2 log(

4d
(δε)2 ) +

4d log(2e/d)
(δε)2 .

I Hence, H has the uniform convergence property.
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The Nonuniform Learnability



I Recall the definition of Agnostic PAC Learnability:

A hypothesis class H is agnostic PAC learnable if there exist a
learning algorithm, A, and a function mH : (0,1)2 → N such
that, for every δ, ε ∈ (0,1) and for every distribution D, if
m ≥ mH(ε, δ), then with probability of at least 1− δ over the
choice of S ∼ Dm it holds that

LD(A(S)) ≤ min
h′∈H

LD(h′) + ε.

I This implies that for every h ∈ H,

LD(A(S)) ≤ LD(h) + ε.



I Competitiveness:

We say that a hypothesis h is (ε, δ)-competitive with another
hypothesis h′ if, with probability higher than (1− δ),

LD(h) ≤ LD(h′) + ε.

I m ≥ mH(ε, δ) vs m ≥ mH(ε, δ,h) ?



Definition (Nonuniform Learnability)
A hypothesis class H is nonuniformly learnable if there exists a
learning algorithm, A, and a function mNUL

H : (0,1)2 ×H → N
such that, for every ε, δ ∈ (0,1) and for every h ∈ H, if
m ≥ mNUL

H (ε, δ,h) then for every distribition D, with probability of
at least 1− δ over the choice of S ∼ Dm, it holds that

LD(A(S)) ≤ LD(h) + ε.

I Agnostic PAC Learnability VS Nonuniform Learnability
I Both two notions require that the output hypothesis will be

(ε, δ)-competitive with every other hypothesis in the class.
I The difference is the question of whether the sample size

may depend on the hypothesis h to which the error of A(S)
is compared.



Characterizing Nonuniform Learnability
I Recall that uniform convergence is sufficient for agnostic

PAC learnabilitty.
I Can we generalize this to nonuniform learnability?

Theorem (7.3)
Let H be a hypothesis class that can be written as a countable
union of hypothesis classes, H =

⋃
n∈NHn, where each Hn

enjoys the uniform convergence property. Then, H is
nonuniformly learnable.



Theorem (7.2)
A hypothesis class H of binary classifiers is nonuniformly
learnable if and only if it is a countable union of agnostic PAC
learnable hypothesis classes.

Proof of Theorem 7.2.
I Assume that H =

⋃
n∈NHn, where each Hn is agnostic

PAC learnable. Using the fundamental theorem of
statistical learning, it follows that each Hn has the uniform
convergence property. By Theorem 7.3, H is nonuniformly
learnable.

I For the other direction, assume that H is nonuniformly
learnable using some algorithm A. For every n ∈ N, let

Hn = {h ∈ H : mNUL
H (1/8,1/7,h) ≤ n}.

Clearly, H =
⋃

n∈NHn.



I (Cont.) In addition, for any distribution D that satisfies the
realizability assumption with respect to Hn, with probability
of at least 1− 1/7 over S ∼ Dn we have that

LD(A(S)) ≤ 1/8.

Using the fundamental theorem of statistical learning, this
implies that the VC-dimension of Hn must be finite, and
therefore Hn is agnostic PAC learnable.



I There are hypothesis classses that are nonuniform
learnble but are not agnostic PAC learnable.
I Consider H =

⋃
n∈NHn:

I for every n ∈ N, Hn is the class of polynomial classifiers of
degree n.

I VCdim(Hn) = n + 1.
I Hn is agnostic PAC learnable.
I VCdim(H) = ∞, where H =

⋃
n∈N Hn.

I H is nonuniform learnable.
I H IS NOT agnostic PAC learnable.

I This implies that nonuniform learnablity is a strict
relaxation of agnostic PAC learnability.



Outline

The Nonuniform Learnability

Structural Risk Minimization



Theorem (7.4)
Let w : N→ [0,1] be a function such that

∑∞
n=1 w(n) ≤ 1. Let

H be a hypothesis class that can be written as H =
⋃

n∈NHn,
where for each n, Hn satisfies the uniform convergence
property with a sample complexity function mUC

Hn
. Let

εn : N× (0,1)→ (0,1) defined as

εn(m, δ) = min{ε ∈ (0,1) : mUC
Hn

(ε, δ) ≤ m}.

Then, for every δ ∈ (0,1) and distribution D, with probability of
at least 1− δ over choice of S ∼ Dm, the following bound holds
(simultaneously) for every n ∈ N and h ∈ Hn,

|LD(h)− LS(h)| ≤ εn(m,w(n) · δ).

Therefore, for every δ ∈ (0,1) and distribution D, with
probability of at least 1− δ it holds that

∀h ∈ H, LD(h) ≤ LS(h) + min
n:h∈Hn

εn(m,w(n) · δ).



Proof of Theorem 7.4.
I For each n define δn = w(n)δ. Applying the assumption of

uniform convergence, we obtain that if we fix n in advance,
then with probability of at least 1− δn over choice of
S ∼ Dm,

∀h ∈ Hn, |LD(h)− LS(h)| ≤ εn(m, δn).

I Applying the union bound over n = 1,2, . . ., we obtain that
with probability of at least

1−
∑

n

δn = 1− δ(
∑

n

w(n)) ≥ 1− δ,

the preceding holds for all n, which concludes our proof.



Denote
n(h) = min{n : h ∈ Hn},

and then

∀h ∈ H, LD(h) ≤ LS(h) + min
n:h∈Hn

εn(m,w(n) · δ).

implies that

LD(h) ≤ LS(h) + εn(h)(m,w(n(h)) · δ).

The Structural Risk Minimization paradigm searches for h that
minimizes this bound.



Structural Risk Minimization (SRM)

prior knowledge:
H =

⋃
n∈NHn, where for each n, Hn has the uniform

convergence property with mUC
Hn

;
w : N→ [0,1] where

∑
n w(n) ≤ 1.

define:

εn(m, δ) = min{ε ∈ (0,1) : mUC
Hn

(ε, δ) ≤ m};

n(h) = min{n : h ∈ Hn}.

input: training set S ∼ Dm, confidence δ
output: h ∈ argminh∈H[LS(h) + εn(h)(m,w(n(h))δ)]



Theorem (7.5)
Let H be a hypothesis class such that H =

⋃
n∈NHn , where

each Hn has the uniform convergence property with sample
complexity mUC

Hn
. Let w : N→ [0,1] be a weighting function

such that w(n) = 6
n2π2 . Then, H is nonuniformly learnable using

the SRM rule with rate

mNUL
H (ε, δ,h) ≤ mUC

Hn(h)
(ε/2,

6δ
(πn(h))2 ).

Proof of Theorem 7.5.
I Let A be the SRM algorithm with respect to the weighting

function w . For every h ∈ H, ε, and δ, let

m ≥ mUC
Hn(h)

(ε,w(n(h))δ).



I Using the fact that
∑

n w(n) = 1,we can apply Theorem 7.4
to get that, with probability of at least 1− δ over the choice
of S ∼ Dm, we have that for every h′ ∈ H,

LD(h′) ≤ LS(h′) + εn(h′)(m,w(n(h′))δ).

The preceding holds in particular for the hypothesis A(S).
I By SRM, we obtain that

LD(A(S)) ≤ min
h′

[LS(h′) + εn(h′)(m,w(n(h′))δ)]

≤ LS(h) + εn(h)(m,w(n(h))δ).

I Finally, if m ≥ mUC
Hn(h)

(ε/2,w(n(h))δ) then clearly

εn(h)(m,w(n(h))δ) ≤ ε/2.



I In addition, from the uniform convergence property of each
Hn we have that with probability of more than 1− δ,

LS(h) ≤ LD(h) + ε/2.

I Combining all the preceding we obtain that

LD(A(S)) ≤ LD(h) + ε,

which concludes the proof.

NOTE THAT the previous theorem also proves Theorem 7.3.
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