PAC Learnability(Cont.)

Spring 2025

Outline

The VC-Dimension

- figure out which classes H are PAC learnable, and
- characterize exactly the sample complexity of learning a given hypothesis calss
- Recall that finite classes are learnable.
 - Every H is PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil rac{\log(|\mathcal{H}|/\delta)}{\epsilon}
ight
ceil$$

 H is agnostically PAC learnable using the ERM algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2,\delta) \leq \lceil rac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2}
ceil.$$

- Let H be the set of all functions from an infinite domain set X to {0,1}. Then, H is not PAC learnable.
- Can infinite-size classes be learnable?

Finiteness vs Infiniteness:

- Consider $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$, where $h_a(x) = \mathbb{I}(x < a)$.
- H is of infinite size.
- → ℋ is PAC learnable, using the ERM rule, with sample complexity of m_H(ε, δ) ≤ ⌈log(2/δ)/ε⌉.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Definition (Restriction of \mathcal{H} to C)

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, \cdots, c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is, $\mathcal{H}_C = \{(h(c_1), \cdots, h(c_m)) : h \in \mathcal{H}\}$, where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Definition (Shattering)

A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0, 1\}$. That is,

$$|\mathcal{H}_{\mathcal{C}}|=2^{|\mathcal{C}|}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Consider $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ again.

• Consider $C_1 = \{c_1\}$, then $h_{c_1+1}(c_1) = 1$ and $h_{c_1-1}(c_1) = 0$. So, \mathcal{H} shatters C_1 ;

(ロ) (同) (三) (三) (三) (○) (○)

• Consider $C_2 = \{c_1, c_2\}$, where $c_1 < c_2$, then $h_a(c_1) = 0$ implies $h_a(c_2) = 0$. So, $h' : C_2 \rightarrow \{0, 1\}$ is not icluded in \mathcal{H}_{C_2} , and C_2 is not shattered by \mathcal{H} .

Corollary

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0, 1\}$. Let m be a training set size. Assume that there exists a set $C \subset \mathcal{X}$ of size 2m that is shattered by \mathcal{H} . Then, for any learning algorithm, A, there exist a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$ and a predictor $h \in \mathcal{H}$ such that $L_{\mathcal{D}}(h) = 0$ but with probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition (VC-dimension)

The VC-dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $\mathcal{C} \subset \mathcal{X}$ that can be shattered by \mathcal{H} . if \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

- To show that $VCdim(\mathcal{H}) = d$ we need to show that
 - 1. There exists a set C of size d that is shattered by \mathcal{H} .

- 2. Every set *C* of size d + 1 is not shattered by \mathcal{H} .
- Let $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$, then VCdim $(\mathcal{H}) = 1$.
- Let \mathcal{H} be a finite class, then $\operatorname{VCdim}(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$.

Theorem

Let \mathcal{H} be a class of infinite VC-dimension. Then, \mathcal{H} is not PAC learnable.

The converse is also true: A finite VC-dimension guarantees learnability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem (The Fundamental Theorem of Statistical Learning)

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 3. \mathcal{H} is agnostic PAC learnable.
- 4. *H* is PAC learnable.
- 5. Any ERM rule is a successful PAC learnable for \mathcal{H} .
- 6. *H* has a finite VC-dimension.

Theorem (The Fundamental Theorem of Statistical Learning-Quantitative Version)

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Assume that $\operatorname{VCdim}(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1 , C_2 such that:

1. *H* has the uniform convergence property with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon^2} \leq m_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq C_2 rac{d + \log(1/\delta)}{\epsilon^2}.$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon^2} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 rac{d + \log(1/\delta)}{\epsilon^2}.$$

3. *H* is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}.$$

Definition (Growth Function)

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C|=m} |\mathcal{H}_C|.$$

• If $\operatorname{VCdim}(\mathcal{H}) = d < \infty$, then for any $m \le d$ we have $\tau_{\mathcal{H}}(m) = 2^m$.

How does the growth function increase when m > d?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma (Sauer-Shelah-Perles)

Let \mathcal{H} be a hypothesis class with $\operatorname{VCdim}(\mathcal{H}) = d < \infty$. Then, for all m, $\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i}$. In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \leq (em/d)^{d}$.

Theorem (6.11)

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every \mathcal{D} and every $\delta \in (0, 1)$, with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ we have

$$|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2m))}}{\delta\sqrt{2m}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (The Fundamental Theorem of Statistical Learning)

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 3. \mathcal{H} is agnostic PAC learnable.
- 4. *H* is PAC learnable.
- 5. Any ERM rule is a successful PAC learnable for \mathcal{H} .
- 6. *H* has a finite VC-dimension.

Proof of the Fundamental Theorem

It suffices to prove that if the VC-dimension is finite then the uniform convergence property holds.

From Sauer's lemma we have that for m > d, τ_H(2m) ≤ (2em/d)^d. Combining this with Theorem 6.11 we obtain that with probability of at least 1 − δ,

$$|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq rac{4 + \sqrt{d\log(2em/d)}}{\delta\sqrt{2m}}$$

For simplicity assume that $\sqrt{d \log(2em/d)} \ge 4$; hence,

$$|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq rac{1}{\delta} \sqrt{rac{2d \log(2em/d)}{m}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• To ensure that
$$\frac{1}{\delta}\sqrt{\frac{2d\log(2em/d)}{m}}$$
 is at most ϵ we need that
$$m \ge \frac{2d\log(m)}{(\delta\epsilon)^2} + \frac{2d\log(2e/d)}{(\delta\epsilon)^2}.$$

Notice that x ≥ 4a log(2a) + 2b ⇒ x ≥ a log(x) + b for a ≥ 1 and b > 0(LEMMA A.2), then a sufficient condition for the preceding to hold is that

$$m \geq 4rac{2d}{(\delta\epsilon)^2}\log(rac{4d}{(\delta\epsilon)^2}) + rac{4d\log(2e/d)}{(\delta\epsilon)^2}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hence, H has the uniform convergence property.

Nonuniform Learnability

Spring 2025

Outline

The Nonuniform Learnability

Recall the definition of Agnostic PAC Learnability:

A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a learning algorithm, A, and a function $m_{\mathcal{H}} : (0, 1)^2 \to \mathbb{N}$ such that, for every $\delta, \epsilon \in (0, 1)$ and for every distribution \mathcal{D} , if $m \ge m_{\mathcal{H}}(\epsilon, \delta)$, then with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ it holds that

$$L_{\mathcal{D}}(\boldsymbol{A}(\boldsymbol{S})) \leq \min_{\boldsymbol{h}' \in \mathcal{H}} L_{\mathcal{D}}(\boldsymbol{h}') + \epsilon.$$

• This implies that for every $h \in \mathcal{H}$,

 $L_{\mathcal{D}}(\mathcal{A}(\mathcal{S})) \leq L_{\mathcal{D}}(h) + \epsilon.$

Competitiveness:

We say that a hypothesis *h* is (ϵ, δ) -competitive with another hypothesis *h'* if, with probability higher than $(1 - \delta)$,

 $L_{\mathcal{D}}(h) \leq L_{\mathcal{D}}(h') + \epsilon.$

(ロ) (同) (三) (三) (三) (○) (○)

• $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ vs $m \ge m_{\mathcal{H}}(\epsilon, \delta, h)$?

Definition (Nonuniform Learnability)

A hypothesis class \mathcal{H} is nonuniformly learnable if there exists a learning algorithm, A, and a function $m_{\mathcal{H}}^{NUL} : (0, 1)^2 \times \mathcal{H} \to \mathbb{N}$ such that, for every $\epsilon, \delta \in (0, 1)$ and for every $h \in \mathcal{H}$, if $m \geq m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ then for every distribution \mathcal{D} , with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$, it holds that

$$L_{\mathcal{D}}(\mathcal{A}(\mathcal{S})) \leq L_{\mathcal{D}}(h) + \epsilon.$$

Agnostic PAC Learnability VS Nonuniform Learnability

- Both two notions require that the output hypothesis will be (ε, δ)-competitive with every other hypothesis in the class.
- The difference is the question of whether the sample size may depend on the hypothesis *h* to which the error of *A*(*S*) is compared.

Characterizing Nonuniform Learnability

- Recall that uniform convergence is sufficient for agnostic PAC learnabilitty.
- Can we generalize this to nonuniform learnability?

Theorem (7.3)

Let \mathcal{H} be a hypothesis class that can be written as a countable union of hypothesis classes, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n enjoys the uniform convergence property. Then, \mathcal{H} is nonuniformly learnable.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (7.2)

A hypothesis class \mathcal{H} of binary classifiers is nonuniformly learnable if and only if it is a countable union of agnostic PAC learnable hypothesis classes.

Proof of Theorem 7.2.

- ► Assume that $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n is agnostic PAC learnable. Using the fundamental theorem of statistical learning, it follows that each \mathcal{H}_n has the uniform convergence property. By Theorem 7.3, \mathcal{H} is nonuniformly learnable.
- For the other direction, assume that *H* is nonuniformly learnable using some algorithm *A*. For every *n* ∈ N, let

$$\mathcal{H}_n = \{h \in \mathcal{H} : m_{\mathcal{H}}^{NUL}(1/8, 1/7, h) \leq n\}.$$

Clearly, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.

• (Cont.) In addition, for any distribution \mathcal{D} that satisfies the realizability assumption with respect to \mathcal{H}_n , with probability of at least 1 - 1/7 over $S \sim \mathcal{D}^n$ we have that

 $L_D(A(S)) \leq 1/8.$

Using the fundamental theorem of statistical learning, this implies that the VC-dimension of \mathcal{H}_n must be finite, and therefore \mathcal{H}_n is agnostic PAC learnable.

(ロ) (同) (三) (三) (三) (○) (○)

- There are hypothesis classses that are nonuniform learnble but are not agnostic PAC learnable.
 - Consider $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$:
 - For every n ∈ N, Hn is the class of polynomial classifiers of degree n.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- ▶ VCdim $(\mathcal{H}_n) = n + 1$.
- \mathcal{H}_n is agnostic PAC learnable.
- VCdim(\mathcal{H}) = ∞ , where $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.
- \mathcal{H} is nonuniform learnable.
- \mathcal{H} IS NOT agnostic PAC learnable.
- This implies that nonuniform learnability is a strict relaxation of agnostic PAC learnability.

Outline

The Nonuniform Learnability

Structural Risk Minimization

Theorem (7.4)

Let $w : \mathbb{N} \to [0, 1]$ be a function such that $\sum_{n=1}^{\infty} w(n) \leq 1$. Let \mathcal{H} be a hypothesis class that can be written as $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where for each n, \mathcal{H}_n satisfies the uniform convergence property with a sample complexity function $m_{\mathcal{H}_n}^{UC}$. Let $\epsilon_n : \mathbb{N} \times (0, 1) \to (0, 1)$ defined as

 $\epsilon_n(m,\delta) = \min\{\epsilon \in (0,1) : m_{\mathcal{H}_n}^{UC}(\epsilon,\delta) \le m\}.$

Then, for every $\delta \in (0, 1)$ and distribution \mathcal{D} , with probability of at least $1 - \delta$ over choice of $S \sim \mathcal{D}^m$, the following bound holds (simultaneously) for every $n \in \mathbb{N}$ and $h \in \mathcal{H}_n$,

$$|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \epsilon_n(m, w(n) \cdot \delta).$$

Therefore, for every $\delta \in (0, 1)$ and distribution \mathcal{D} , with probability of at least $1 - \delta$ it holds that

$$\forall h \in \mathcal{H}, \ L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta).$$

Proof of Theorem 7.4.

For each *n* define δ_n = w(n)δ. Applying the assumption of uniform convergence, we obtain that if we fix *n* in advance, then with probability of at least 1 − δ_n over choice of S ~ D^m,

$$\forall h \in \mathcal{H}_n, |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \epsilon_n(m, \delta_n).$$

Applying the union bound over n = 1, 2, ..., we obtain that with probability of at least

$$1-\sum_{n}\delta_{n}=1-\delta(\sum_{n}w(n))\geq 1-\delta,$$

A D F A 同 F A E F A E F A Q A

the preceding holds for all *n*, which concludes our proof.

Denote

$$n(h) = \min\{n : h \in \mathcal{H}_n\},\$$

and then

$$\forall h \in \mathcal{H}, \ L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta).$$

implies that

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \epsilon_{n(h)}(m, w(n(h)) \cdot \delta).$$

The Structural Risk Minimization paradigm searches for *h* that minimizes this bound.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Structural Risk Minimization (SRM)

prior knowledge:

 $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where for each *n*, \mathcal{H}_n has the uniform convergence property with $m_{\mathcal{H}_n}^{UC}$; $w : \mathbb{N} \to [0, 1]$ where $\sum_n w(n) \leq 1$. **define**:

$$\epsilon_n(m,\delta) = \min\{\epsilon \in (0,1) : m_{\mathcal{H}_n}^{UC}(\epsilon,\delta) \le m\};$$
$$n(h) = \min\{n : h \in \mathcal{H}_n\}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

input: training set $S \sim D^m$, confidence δ **output**: $h \in \operatorname{argmin}_{h \in \mathcal{H}}[L_S(h) + \epsilon_{n(h)}(m, w(n(h))\delta)]$

Theorem (7.5)

Let \mathcal{H} be a hypothesis class such that $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n has the uniform convergence property with sample complexity $m_{\mathcal{H}_n}^{UC}$. Let $w : \mathbb{N} \to [0, 1]$ be a weighting function such that $w(n) = \frac{6}{n^2 \pi^2}$. Then, \mathcal{H} is nonuniformly learnable using the SRM rule with rate

$$m^{ extsf{NUL}}_{\mathcal{H}}(\epsilon,\delta,h) \leq m^{ extsf{UC}}_{\mathcal{H}_{n(h)}}(\epsilon/2,rac{6\delta}{(\pi n(h))^2}).$$

Proof of Theorem 7.5.

Let A be the SRM algorithm with respect to the weighting function w. For every h ∈ H, ε, and δ, let

$$m \geq m_{\mathcal{H}_{n(h)}}^{UC}(\epsilon, w(n(h))\delta).$$

► Using the fact that $\sum_{n} w(n) = 1$, we can apply Theorem 7.4 to get that, with probability of at least $1 - \delta$ over the choice of $S \sim D^m$, we have that for every $h' \in H$,

$$L_{\mathcal{D}}(h') \leq L_{\mathcal{S}}(h') + \epsilon_{n(h')}(m, w(n(h'))\delta).$$

The preceding holds in particular for the hypothesis *A*(*S*).▶ By SRM, we obtain that

$$L_{\mathcal{D}}(\mathcal{A}(\mathcal{S})) \leq \min_{h'} [L_{\mathcal{S}}(h') + \epsilon_{n(h')}(m, w(n(h'))\delta)]$$

$$\leq L_{\mathcal{S}}(h) + \epsilon_{n(h)}(m, w(n(h))\delta).$$

Finally, if $m \ge m_{\mathcal{H}_{n(h)}}^{UC}(\epsilon/2, w(n(h))\delta)$ then clearly

 $\epsilon_{n(h)}(m, w(n(h))\delta) \leq \epsilon/2.$

▶ In addition, from the uniform convergence property of each \mathcal{H}_n we have that with probability of more than $1 - \delta$,

$$L_{\mathcal{S}}(h) \leq L_{\mathcal{D}}(h) + \epsilon/2.$$

Combining all the preceding we obtain that

$$L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon,$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

which concludes the proof.

NOTE THAT the previous theorem also proves Theorem 7.3.