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Outline

The VC-Dimension



» Our goal:

» figure out which classes 7 are PAC learnable, and
» characterize exactly the sample complexity of learning a
given hypothesis calss

» Recall that finite classes are learnable.
» Every H is PAC learnable with sample complexity

og([741/9),

mH(6,5) < { .

» H is agnostically PAC learnable using the ERM algorithm
with sample complexity

2log(2|H|/5)1
> :

> Let H be the set of all functions from an infinite domain set
X to {0,1}. Then, H is not PAC learnable.

» Can infinite-size classes be learnable?

myy(e,8) < m4C(e/2,6) < | -



Finiteness vs Infiniteness:
» Consider H = {hs : a € R}, where hy(x) =I(x < a).
» H is of infinite size.

» 7 is PAC learnable, using the ERM rule, with sample
complexity of my(e, ) < [log(2/9)/€].



Definition (Restriction of # to C)

Let 7 be a class of functions from X to {0, 1} and let
C={c, - ,cm} C X. The restriction of # to C is the set of
functions from C to {0, 1} that can be derived from #. That is,
He ={(h(cy), -+ ,h(cm)) : h € H}, where we represent each
function from C to {0, 1} as a vector in {0, 1}/€I.

Definition (Shattering)
A hypothesis class H shatters a finite set C C X' if the
restriction of # to C is the set of all functions from C to {0, 1}.
That is,

Mol =2/°.



Consider H = {h; : a € R} again.
» Consider Cy = {¢1}, then he,1(c1) =1 and hg,_1(cy) = 0.
So, H shatters Cy;
» Consider C, = {cy, Co}, Where ¢; < ¢y, then ha(ci) =0
implies hs(c2) = 0. So, H' : C, — {0,1} is not icluded in
Hc,, and Cs is not shattered by H.



Corollary

Let H be a hypothesis class of functions from X to {0,1}. Let
m be a training set size. Assume that there exists a set C C X
of size 2m that is shattered by H. Then, for any learning
algorithm, A, there exist a distribution D over X x {0,1} and a
predictor h € H such that Lp(h) = 0 but with probability of at
least% over the choice of S ~ D™ we have that Lp(A(S)) > %



Definition (VC-dimension)

The VC-dimension of a hypothesis class #, denoted
VCdim(H), is the maximal size of a set C C X that can be
shattered by H. if # can shatter sets of arbitrarily large size we
say that # has infinite VC-dimension.

» To show that VCdim(H) = d we need to show that
1. There exists a set C of size d that is shattered by H.
2. Every set C of size d + 1 is not shattered by #.

» Let H = {hy: ac R}, then VCdim(H) = 1.
» Let H be a finite class, then VCdim(H) < log,(|H]).



Theorem
Let H be a class of infinite VC-dimension. Then, H is not PAC
learnable.

The converse is also true: A finite VC-dimension guarantees
learnability.



Theorem (The Fundamental Theorem of Statistical
Learning)

Let H be a hypothesis class of functions from a domain X to
{0, 1} and let the loss function be the 0-1 loss. Then, the
following are equivalent:

1.

‘H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.

o ok~ w

‘H is agnostic PAC learnable.

‘H is PAC learnable.

Any ERM rule is a successful PAC learnable for H.
‘H has a finite VC-dimension.



Theorem (The Fundamental Theorem of Statistical
Learning-Quantitative Version)

Let H be a hypothesis class of functions from a domain X to
{0,1} and let the loss function be the 0-1 loss. Assume that
VCdim(H) = d < co. Then, there are absolute constants Cy,
C, such that:

1. H has the uniform convergence property with sample
complexity

d+ Iog( /6)

6

¢ d+|og(1/5).

H(75)SC2 2

2. H is agnostic PAC learnable with sample complexity

d + log(1/9)

: < my(e,8) < Czcﬂ—loigﬁ/é)‘

Cq 2
3. H is PAC learnable with sample complexity

o, d+I0s(1/8) _ o dlog(1/c) +log(1/6)

€ €




Definition (Growth Function)

Let H be a hypothesis class. Then the growth function of ,
denoted 7, : N — N, is defined as

» If VCdim(#H) = d < oo, then for any m < d we have
m(m) =2M.
» How does the growth function increase when m > d?



Lemma (Sauer-Shelah-Perles)
Let H be a hypothesis class with VCdim(H) = d < oo. Then, for

d

allm, ry(m) < >° ( T > In particular, if m > d + 1 then
i=0

(m) < (em/d)?.

Theorem (6.11)

Let H be a class and let T, be its growth function. Then, for
every D and every ¢ € (0, 1), with probability of at least1 —
over the choice of S ~ D™ we have

log(#(2m))

vem

Lo(h) — Ls(h)] < 2



Theorem (The Fundamental Theorem of Statistical
Learning)

Let H be a hypothesis class of functions from a domain X to
{0, 1} and let the loss function be the 0-1 loss. Then, the
following are equivalent:

1.

‘H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.

o ok~ w

‘H is agnostic PAC learnable.

‘H is PAC learnable.

Any ERM rule is a successful PAC learnable for H.
‘H has a finite VC-dimension.



Proof of the Fundamental Theorem

It suffices to prove that if the VC-dimension is finite then the
uniform convergence property holds.

» From Sauer’s lemma we have that for m > d,
m(2m) < (2em/d)?. Combining this with Theorem 6.11
we obtain that with probability of at least 1 — 9,

Lo(h) — Ls(h)] < 4TV ‘j’s'\‘}gfem/ 9

For simplicity assume that \/d log(2em/d) > 4; hence,

Lo(h) — Ls(h)| < \/2d|og(26m/d)

m




> To ensure that 1/29'6(2em/d) js ot most ¢ we need that

2dlog(m) 2dlog(2e/d)
S A (7 I

> Notice that x > 4alog(2a) +2b = x > alog(x) + b for
a>1and b > 0(LEMMA A.2), then a sufficient condition
for the preceding to hold is that

2d 4d | 4dlog(2e/d)

™2 4G B G T e

» Hence, H has the uniform convergence property.



Nonuniform Learnability
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The Nonuniform Learnability



» Recall the definition of Agnostic PAC Learnability:

A hypothesis class H is agnostic PAC learnable if there exist a
learning algorithm, A, and a function my, : (0,1)? — N such
that, for every ¢, ¢ € (0, 1) and for every distribution D, if

m > my(e, d), then with probability of at least 1 — § over the
choice of S ~ D™ it holds that

Lp(A(S)) < min Lp(H) +e.

» This implies that for every h € H,

Lp(A(S)) < Lp(h) +e.



» Competitiveness:

We say that a hypothesis his (e, §)-competitive with another
hypothesis H' if, with probability higher than (1 — §),

LD(h) S LD(H) + €.

» m>my(e,6) vs m>my(ed,h)?



Definition (Nonuniform Learnability)

A hypothesis class # is nonuniformly learnable if there exists a
learning algorithm, A, and a function myUt : (0,1)2 x H — N
such that, for every ¢,6 € (0,1) and for every h € H, if

m > miY(e, 8, h) then for every distribition D, with probability of
at least 1 — ¢ over the choice of S ~ D™, it holds that

Lp(A(S)) < Lp(h) +e.

» Agnostic PAC Learnability VS Nonuniform Learnability

» Both two notions require that the output hypothesis will be
(e, 0)-competitive with every other hypothesis in the class.

» The difference is the question of whether the sample size
may depend on the hypothesis h to which the error of A(S)
is compared.



Characterizing Nonuniform Learnability

» Recall that uniform convergence is sufficient for agnostic
PAC learnabilitty.

» Can we generalize this to nonuniform learnability?

Theorem (7.3)

Let H be a hypothesis class that can be written as a countable
union of hypothesis classes, H = |,y Hn, Where each H,
enjoys the uniform convergence property. Then, H is
nonuniformly learnable.



Theorem (7.2)

A hypothesis class H of binary classifiers is nonuniformly
learnable if and only if it is a countable union of agnostic PAC
learnable hypothesis classes.

Proof of Theorem 7.2.

» Assume that H = U,y Hn, Where each H is agnostic
PAC learnable. Using the fundamental theorem of
statistical learning, it follows that each #, has the uniform
convergence property. By Theorem 7.3, H is nonuniformly
learnable.

» For the other direction, assume that # is nonuniformly
learnable using some algorithm A. For every n € N, let

Hp={heH  mi"(1/8,1/7,h) < n}.

Clearly, H = ey Hn-



» (Cont.) In addition, for any distribution D that satisfies the
realizability assumption with respect to #,, with probability
of atleast 1 — 1/7 over S ~ D" we have that

Lp(A(S)) < 1/8.

Using the fundamental theorem of statistical learning, this
implies that the VC-dimension of #, must be finite, and
therefore H,, is agnostic PAC learnable.



» There are hypothesis classses that are nonuniform
learnble but are not agnostic PAC learnable.
» Consider H = ey Hn:

>

>
>
>
>
>

for every n € N, H, is the class of polynomial classifiers of
degree n.

VCdim(Hn) = n+ 1.

‘H, is agnostic PAC learnable.

VCdim(H) = oo, where H = |, Hn-

H is nonuniform learnable.

H 1S NOT agnostic PAC learnable.

» This implies that nonuniform learnablity is a strict
relaxation of agnostic PAC learnability.



Outline

The Nonuniform Learnability

Structural Risk Minimization



Theorem (7.4)

Letw : N — [0, 1] be a function such that>";> , w(n) < 1. Let
H be a hypothesis class that can be written as H = ey Hns
where for each n, H, satisfies the uniform convergence
property with a sample complexity function mﬂf Let

en: N x(0,1) — (0,1) defined as

en(m, 8) = min{e € (0,1) : m§C(e,5) < m}.

Then, for every § € (0,1) and distribution D, with probability of
at least 1 — 6 over choice of S ~ D™, the following bound holds
(simultaneously) for every n € N and h € H,p,

ILp(h) = Ls(h)| < en(m, w(n) - 6).

Therefore, for every 6 € (0,1) and distribution D, with
probability of at least 1 — ¢ it holds that

VheH, Lo(h) < Lg(h)+ min en(m, w(n)-3).
n-heHn



Proof of Theorem 7.4.

» For each n define §, = w(n)d. Applying the assumption of
uniform convergence, we obtain that if we fix nin advance,
then with probability of at least 1 — 6, over choice of
S~Dm

Vh € Hp, |Lp(h) — Ls(h)| < en(m, 6p).

» Applying the union bound over n = 1,2, ..., we obtain that
with probability of at least

1= 6n=1-05_w(n)>1-35,

the preceding holds for all n, which concludes our proof.



Denote
n(h) = min{n: he H,},

and then

VheH, Lp(h) < Lg(h)+ min en(m, w(n)-3).
n:heHn

implies that
Lp(h) < Ls(h) + en(n)(m, w(n(h)) - 6).

The Structural Risk Minimization paradigm searches for h that
minimizes this bound.



Structural Risk Minimization (SRM)

prior knowledge:

H = Upen Hn, Where for each n, H, has the uniform
convergence property with myc;

w: N —[0,1] where ), w(n) < 1.

define:

en(m, ) = min{e € (0,1) : m¥C(e,8) < m};
n(h) = min{n: he Hu}.

input: training set S ~ D™, confidence §
output: h € argmingcq/[Ls(h) + enny(m, w(n(h))o)]



Theorem (7.5)

Let 1 be a hypothesis class such thatH = | J,,c Hn , where
each H, has the uniform convergence property with sample
complexity myC. Let w : N — [0, 1] be a weighting function

such that w(n) = n267r2' Then, H is nonuniformly learnable using
the SRM rule with rate

60
(A

mN (e, 8, h) < mgf(h)(e/z,

Proof of Theorem 7.5.

> Let A be the SRM algorithm with respect to the weighting
function w. For every h € H, ¢, and 6, let

m > myC (e, w(n(h))s).



» Using the fact that ), w(n) = 1,we can apply Theorem 7.4
to get that, with probability of at least 1 — ¢ over the choice
of S ~ D™, we have that for every h' € H,

Lp(H) < Ls(H) + engwy(m, w(n(H))).
The preceding holds in particular for the hypothesis A(S).
» By SRM, we obtain that
Lp(A(S)) < min[Ls(H) + engr)(m, w(n(H))é)]
< Ls(h) + enny(m, w(n(h))s).

> Finally, if m > m%f(h)(e/Z, w(n(h))é) then clearly

ey (m, w(n(h))5) < e/2.



» |n addition, from the uniform convergence property of each
‘H, we have that with probability of more than 1 — 6,

Ls(h) < LD(h) + 6/2.
» Combining all the preceding we obtain that
Lp(A(S)) < Lp(h) + e,

which concludes the proof.

NOTE THAT the previous theorem also proves Theorem 7.3.
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